KOREAN LETTER HANDWRITING RECOGNITION USING CONVOLUTIONAL NEURAL NETWORK METHOD VGG-16 ARSITEKTUR ARCHITECTURE
(1) Multi Data Palembang University, South Sumatra
(2) Multi Data Palembang University, South Sumatra
(3) Multi Data Palembang University, South Sumatra
Corresponding Author
Abstract
Handwritten is a unique characteristic because each people has different handwriting. Handwritten can be an object to recognition of someone. In research on handwritten Korean alphabet recognition using the Convolutional Neural Network method with VGG-16 architecture. Data is scanned from 24 Korean handwritten alphabets with 14 kinds of consonants and 10 kinds of vocals on paper with black ink. Data there are two scenarios namely research using original data without binarization and data with binarization which for both scenarios are previously data has been resized. This research uses k-fold cross-validation with a value for k=5 and a confusion matrix. The result showed that both of scenarios are can be recognized with 99,52% accuracy, 95,56% precision, 94,11% recall for first scenario and 99,42% accuracy, 95,94% precision, 93,11% recall for second scenario.
References
Rizka Aulia Ramadhani, “Perilaku konsumsi dan produksi budaya penggemar pada komunitas army BTS jogja,” Univ. Islam Indones., 2019.
K. P. Sari, I. I. Tritoasmoro, and E. Susatio, “Pengalih citra karakter korea-indonesia menggunakan klasifikasi k-nearest neighbour dan template matching,” Fak. Tek. Elektro, 2012.
I. J. Kim and X. Xie, “Handwritten Hangul recognition using deep convolutional neural networks,” Int. J. Doc. Anal. Recognit., vol. 18, no. 1, pp. 1–13, 2014.
M. Velentina Y.C, E. Erin, R. Angreni, and D. Alamsyah, “Penerapan algoritma hough transform untuk pengenalan goresan tangan huruf korea,” Stmik Gi Mdp, no. x, pp. 1–10, 2016.
G. U. S. Lumanauw, “Pengenalan kata tulisan tangan huruf korea menggunakan deep convolutional neural network berbasis android,” J. Phys. Conf. Ser., vol. 978, no. 1, p. 46, 2018.
J. Sandywan and C. A. Chandra, “Pengenalan tulisan tangan menggunakan metode hidden markov model,” Stmik Gi Mdp, no. x, pp. 1–8, 2019.
I. W. Suartika, A. Y. Wijaya, and R. Soelaiman, “Klasifikasi citra menggunakan convolutional neural network (CNN) pada caltech 101,” J. Tek. ITS, vol. 5, no. 1, 2016.
S. C. A. Pradhana, “Pengenalan aksara jawa dengan menggunakan metode convolutional neural network,” e-Proceeding Eng., vol. 7, no. 1, pp. 2558–2567, 2020.
A. T. Christopher Albert Lorentius, Rudy Adipranata, “Pengenalan aksara jawa dengan menggunakan metode convolutional neural network,” e-Proceeding Eng., vol. 7, no. 1, pp. 2558–2567, 2019.
M. A. Pragathi, K. Priyadarshini, S. Saveetha, A. S. Banu, and K. O. Mohammed Aarif, “Handwritten tamil character recognition using deep learning,” Proc. - Int. Conf. Vis. Towar. Emerg. Trends Commun. Networking, ViTECoN 2019, pp. 1–5, 2019.
D. Maharani, “Pengenalan karakter Korea ( hangeul ) tulisan tangan menggunakan zone centroid and zone ( ZCZ ) dan backpropagation,” Fak. Ilmu Komput. Univ. Sriwij., 2016.
A. N. Septiawan and T. Setiadi, “Aplikasi pengenalan huruf hangeul berbasis multimedia interaktif,” J. Sarj. Tek. Inform., vol. 1, no. 1, pp. 347–357, 2013.
A. K. Hwa, C. H. Yong, R. N. Adinda, S. Agung, and F. Hutagualung, “Buku korea terpadu untuk orang indonesia.” Seoul, 2013.
M. M. Taslim, K. Gunadi, and A. N. Tjondrowiguno, “Deteksi rumus matematika pada halaman dokumen digital dengan metode convolutional neural network,” Univ. Kristen Petra, vol. Vol 7, 2019.
Y. Achmad, R. C. Wihandika, and C. Dewi, “Klasifikasi emosi berdasarkan ciri wajah wenggunakan convolutional neural network,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 11, pp. 10595–10604, 2019.
Article Metrics
Abstract View : 217 timesPDF Download : 48 times
DOI: 10.56327/ijairtec.v1i3.33
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 International Journal of Artificial Intelligence and Robotic Technology